27/04/2018, 13:38

Câu 30 trang 11 Sách bài tập (SBT) Toán 9 tập 2

Giải các hệ phương trình sau theo hai cách. ...

Giải các hệ phương trình sau theo hai cách.

Giải các hệ phương trình sau theo hai cách (cách thứ nhất: đưa hệ phương trình về dạng

(left{ {matrix{
{ax + by = c} cr
{a'x + b'y = c'} cr} } ight.);

cách thứ hai: đặt ẩn phụ, chẳng hạn 3x – 2 = s, 3y + 2 = t):

(a)left{ {matrix{
{2left( {3x - 2} ight) - 4 = 5left( {3y + 2} ight)} cr
{4left( {3x - 2} ight) + 7left( {3y + 2} ight) = - 2} cr} } ight.)

(b)left{ {matrix{
{3left( {x + y} ight) + 5left( {x - y} ight) = 12} cr
{ - 5left( {x + y} ight) + 2left( {x - y} ight) = 11} cr} } ight.)

Giải

a) Cách 1:

(eqalign{
& left{ {matrix{
{2left( {3x - 2} ight) - 4 = 5left( {3y + 2} ight)} cr
{4left( {3x - 2} ight) + 7left( {3y + 2} ight) = - 2} cr} } ight. cr 
& Leftrightarrow left{ {matrix{
{6x - 4 - 4 = 15y + 10} cr 
{12x - 8 + 21y + 14 = - 2} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{6x - 15y = 18} cr 
{12x + 21y = - 8} cr
} } ight. Leftrightarrow left{ {matrix{
{12x - 30y = 36} cr 
{12x + 21y = - 8} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{6x - 15y = 18} cr 
{51y = - 44} cr
} } ight. Leftrightarrow left{ {matrix{
{2x - 5y = 6} cr 
{y = - {{44} over {51}}} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{2x = 6 - {{220} over {51}}} cr 
{y = - {{44} over {51}}} cr
} } ight. Leftrightarrow left{ {matrix{
{2x = {{86} over {51}}} cr 
{y = - {{44} over {51}}} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{x = {{43} over {51}}} cr 
{y = - {{44} over {51}}} cr} } ight. cr} )

Cách 2: Đặt 3x – 2 = s, 3y + 2 = t ta có hệ phương trình:

(eqalign{
& left{ {matrix{
{2s - 4 = 5t} cr
{4s + 7t = - 2} cr
} } ight. Leftrightarrow left{ {matrix{
{4s - 10t = 8} cr 
{4s + 7t = - 2} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{17t = - 10} cr 
{2s - 5t = 4} cr
} } ight. Leftrightarrow left{ {matrix{
{t = - {{10} over {17}}} cr 
{2s - 5t = 4} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{t = - {{10} over {17}}} cr 
{2s - 5.left( { - {{10} over {17}}} ight) = 4} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{t = - {{10} over {17}}} cr 
{2s = 4 - {{50} over {17}}} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{t = - {{10} over {17}}} cr 
{s = {9 over {17}}} cr} } ight. cr} )

Suy ra:

(eqalign{
& left{ {matrix{
{3x - 2 = {9 over {17}}} cr
{3y + 2 = - {{10} over {17}}} cr
} } ight. Leftrightarrow left{ {matrix{
{3x = 2 + {9 over {17}}} cr 
{3y = - {{10} over {17}} - 2} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{3x = {{43} over {17}}} cr 
{3y = - {{44} over {17}}} cr
} } ight. Leftrightarrow left{ {matrix{
{x = {{43} over {51}}} cr 
{y = - {{44} over {51}}} cr} } ight. cr} )

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (left( {{{43} over {51}}; - {{44} over {51}}} ight))

b) Cách 1:

(eqalign{
& left{ {matrix{
{3left( {x + y} ight) + 5left( {x - y} ight) = 12} cr
{ - 5left( {x + y} ight) + 2left( {x - y} ight) = 11} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{3x + 3y + 5x - 5y = 12} cr 
{ - 5x - 5y + 2x - 2y = 11} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{8x - 2y = 12} cr 
{ - 3x - 7y = 11} cr
} } ight. Leftrightarrow left{ {matrix{
{4x - y = 6} cr 
{3x + 7y = - 11} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{12x - 3y = 18} cr 
{12x + 28y = - 44} cr
} } ight. Leftrightarrow left{ {matrix{
{31y = - 62} cr 
{4x - y = 6} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{y = - 2} cr 
{4x + 2 = 6} cr
} } ight. Leftrightarrow left{ {matrix{
{y = - 2} cr 
{x = 1} cr} } ight. cr} )

Cách 2: Đặt x + y = s; x – y = t ta có hệ phương trình:

(eqalign{
& left{ {matrix{
{3s + 5t = 12} cr
{ - 5s + 2t = 11} cr
} } ight. Leftrightarrow left{ {matrix{
{15s + 25t = 60} cr 
{ - 15s + 6t = 33} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{31t = 93} cr 
{ - 5s + 2t = 11} cr
} } ight. Leftrightarrow left{ {matrix{
{t = 3} cr 
{ - 5s + 2.3 = 11} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{t = 3} cr 
{s = - 1} cr} } ight. cr} )

Suy ra:

(eqalign{
& left{ {matrix{
{x + y = - 1} cr
{x - y = 3} cr
} } ight. Leftrightarrow left{ {matrix{
{2x = 2} cr 
{x - y = 3} cr
} } ight. cr 
& Leftrightarrow left{ {matrix{
{x = 1} cr 
{1 - y = 3} cr
} } ight. Leftrightarrow left{ {matrix{
{x = 1} cr 
{y = - 2} cr} } ight. cr} )

Vậy hệ phương trình đã cho có một nghiệm (x; y) =  (1; -2).

Sachbaitap.com

0