27/04/2018, 08:17

Câu 24 trang 30 Sách bài tập (SBT) Toán 8 tập 1

Làm tính nhân phân thức : ...

Làm tính nhân phân thức :

Làm tính nhân phân thức :

a. ({{3x - 2} over {2xy}} - {{7x - 4} over {2xy}})

b. ({{3x + 5} over {4{x^3}y}} - {{5 - 15x} over {4{x^3}y}})

c. ({{4x + 7} over {2x + 2}} - {{3x + 6} over {2x + 2}})

d. ({{9x + 5} over {2left( {x - 1} ight){{left( {x + 3} ight)}^2}}} - {{5x - 7} over {2left( {x - 1} ight){{left( {x + 3} ight)}^2}}})

e. ({{xy} over {{x^2} - {y^2}}} - {{{x^2}} over {{y^2} - {x^2}}})

f. ({{5x + {y^2}} over {{x^2}y}} - {{5y - {x^2}} over {x{y^2}}})

g. ({x over {5x + 5}} - {x over {10x - 10}})

h. ({{x + 9} over {{x^2} - 9}} - {3 over {{x^2} + 3x}})

Giải:

a.  ({{3x - 2} over {2xy}} - {{7x - 4} over {2xy}})( = {{3x - 2} over {2xy}} + {{4 - 7x} over {2xy}} = {{3x - 2 + 4 - 7x} over {2xy}} = {{2left( {1 - 2x} ight)} over {2xy}} = {{1 - 2x} over {xy}})

b. ({{3x + 5} over {4{x^3}y}} - {{5 - 15x} over {4{x^3}y}})( = {{3x + 5} over {4{x^3}y}} + {{15x - 5} over {4{x^3}y}} = {{3x + 5 + 15x - 5} over {4{x^3}y}} = {{18x} over {4{x^3}y}} = {9 over {2{x^2}y}})

c. ({{4x + 7} over {2x + 2}} - {{3x + 6} over {2x + 2}})( = {{4x + 7} over {2x + 2}} + {{ - left( {3x + 6} ight)} over {2x + 2}} = {{4x + 7 - 3x - 6} over {2x + 2}} = {{x + 1} over {2left( {x + 1} ight)}} = {1 over 2})

d. ({{9x + 5} over {2left( {x - 1} ight){{left( {x + 3} ight)}^2}}} - {{5x - 7} over {2left( {x - 1} ight){{left( {x + 3} ight)}^2}}})( = {{9x + 5} over {2left( {x - 1} ight){{left( {x + 3} ight)}^2}}} + {{7 - 5x} over {2left( {x - 1} ight){{left( {x + 3} ight)}^2}}})

( = {{9x + 5 + 7 - 5x} over {2left( {x - 1} ight){{left( {x + 3} ight)}^2}}} = {{4left( {x + 3} ight)} over {2left( {x - 1} ight){{left( {x + 3} ight)}^2}}} = {2 over {left( {x - 1} ight)left( {x + 3} ight)}})

e. ({{xy} over {{x^2} - {y^2}}} - {{{x^2}} over {{y^2} - {x^2}}})( = {{xy} over {{x^2} - {y^2}}} + {{{x^2}} over {{x^2} - {y^2}}} = {{xy + {x^2}} over {{x^2} - {y^2}}} = {{xleft( {x + y} ight)} over {left( {x + y} ight)left( {x - y} ight)}} = {x over {x - y}})

f. ({{5x + {y^2}} over {{x^2}y}} - {{5y - {x^2}} over {x{y^2}}})( = {{5x + {y^2}} over {{x^2}y}} + {{{x^2} - 5y} over {x{y^2}}} = {{yleft( {5x + {y^2}} ight)} over {{x^2}{y^2}}} + {{xleft( {{x^2} - 5y} ight)} over {{x^2}{y^2}}})

( = {{5xy + {y^3} + {x^3} - 5xy} over {{x^2}{y^2}}} = {{{x^3} + {y^3}} over {{x^2}{y^2}}})

g. ({x over {5x + 5}} - {x over {10x - 10}})( = {x over {5left( {x + 1} ight)}} + {{ - x} over {10left( {x - 1} ight)}} = {{2xleft( {x - 1} ight)} over {10left( {x + 1} ight)left( {x - 1} ight)}} + {{ - xleft( {x + 1} ight)} over {10left( {x + 1} ight)left( {x - 1} ight)}})

( = {{2{x^2} - 2x - {x^2} - x} over {10left( {x + 1} ight)left( {x - 1} ight)}} = {{{x^2} - 3x} over {10left( {x + 1} ight)left( {x - 1} ight)}})

h. ({{x + 9} over {{x^2} - 9}} - {3 over {{x^2} + 3x}})( = {{x + 9} over {left( {x + 3} ight)left( {x - 3} ight)}} + {{ - 3} over {xleft( {x + 3} ight)}} = {{xleft( {x + 9} ight)} over {xleft( {x + 3} ight)left( {x - 3} ight)}} + {{ - 3left( {x - 3} ight)} over {xleft( {x + 3} ight)left( {x - 3} ight)}})

( = {{{x^2} + 9x - 3x + 9} over {xleft( {x + 3} ight)left( {x - 3} ight)}} = {{{x^2} + 6x + 9} over {xleft( {x + 3} ight)left( {x - 3} ight)}} = {{{{left( {x + 3} ight)}^2}} over {xleft( {x + 3} ight)left( {x - 3} ight)}} = {{x + 3} over {xleft( {x - 3} ight)}})

0