25/05/2018, 08:54

Cảm biến quang dẫn

Hiệu ứng quang dẫn (hay còn gọi là hiệu ứng quang điện nội) là hiện tượng giải phóng những hạt tải điện (hạt dẫn) trong vật liệu dưới tác dụng của ánh sáng làm tăng độ dẫn điện của vật liệu. Trong chất bán dẫn, các điện tử liên kết ...

Hiệu ứng quang dẫn (hay còn gọi là hiệu ứng quang điện nội) là hiện tượng giải phóng những hạt tải điện (hạt dẫn) trong vật liệu dưới tác dụng của ánh sáng làm tăng độ dẫn điện của vật liệu.

Trong chất bán dẫn, các điện tử liên kết với hạt nhân, để giải phóng điện tử khỏi nguyên tử cần cung cấp cho nó một năng lượng tối thiểu bằng năng lượng liên kết Wlk. Khi điện tử được giải phóng khỏi nguyên tử, sẽ tạo thành hạt dẫn mới trong vật liệu.

Hình 7.3: . ảnh hưởng của bản chất vật liệu đến hạt dẫn được giải phóng

Hạt dẫn được giải phóng do chiếu sáng phụ thuộc vào bản chất của vật liệu bị chiếu sáng. Đối với các chất bán dẫn tinh khiết các hạt dẫn là cặp điện tử - lỗ trống.

Đối với trường hợp bán dẫn pha tạp, hạt dẫn được giải phóng là điện tử nếu là pha tạp dono hoặc là lỗ trống nếu là pha tạp acxepto.

Giả sử có một tấm bán dẫn phẳng thể tích V pha tạp loại N có nồng độ các donor Nd, có mức năng lượng nằm dưới vùng dẫn một khoảng bằng Wd đủ lớn để ở nhiệt độ phòng và khi ở trong tối nồng độ n0 của các donor bị ion hoá do nhiệt là nhỏ.

Hình 7.4: Tế bào quang dẫn và sự chuyển mức năng lượng của điện tử

Khi ở trong tối, nồng độ điện tử được giải phóng trong một đơn vị thời gian tỉ lệ với nồng độ các tạp chất chưa bị ion hoá và bằng a(Nd -no), với hệ số a xác định theo công thức:

(7.6)

Trong đó q là trị tuyệt đối của điện tích điện tử, T là nhiệt độ tuyệt đối của khối vật liệu, k là hằng số.

Số điện tử tái hợp với các nguyên tử đã bị ion hoá trong một đơn vị thời gian tỉ lệ với các nguyên tử đã bị ion hoá n0 và nồng độ điện tử cũng chính bằng n0 và bằng r. n02 , trong đó r là hệ số tái hợp.

Phương trình động học biểu diễn sự thay đổi nồng độ điện tử tự do trong khối

vật liệu có dạng:

ở trạng thái cân bằng ta có :

Suy ra: (7.2)

Độ dẫn trong tối được biểu diễn bởi hệ thức: (7.8)

Trong đó μ là độ linh động của điện tử.

Khi nhiệt độ tăng, độ linh động của điện tử giảm, nhưng sự tăng mật độ điện tử tự do do sự kích thích nhiệt lớn hơn nhiều nên ảnh hưởng của nó là nhân tố quyết định đối với độ dẫn.

Khi chiếu sáng, các photon sẽ ion hoá các nguyên tử donor, giải phóng ra các điện tử. Tuy nhiên không phải tất cả các photon đập tới bề mặt vật liệu đều giải phóng điện tử, một số bị phản xạ ngay ở bề mặt, một số bị hấp thụ và chuyển năng lượng cho điện tử dưới dạng nhiệt năng, chỉ phần còn lại mới tham gia vào giải phóng điện tử. Do vậy, số điện tử (g) được giải phóng do bị chiếu sáng trong một giây ứng với một đơn vị thể tích vật liệu, xác định bởi công thức:

(7.9)

Trong đó:

G - số điện tử được giải phóng trong thể tích V trong thời gian một giây.

V=A.L, với A, L là diện tích mặt cạnh và chiều rộng tấm bán dẫn (hình 7.4).

η - hiệu suất lượng tử (số điện tử hoặc lỗ trống trung bình được giải phóng khi một photon bị hấp thụ).

R - là hệ số phản xạ của bề mặt vật liệu.

λ - bước sóng ánh sáng.

Φ - thông lượng ánh sáng.

h - hằng số Planck.

Phương trình động học của tái hợp trong trường hợp này có dạng:

Thông thường bức xạ chiếu tới đủ lớn để số điện tử được giải phóng lớn hơn rất nhiều so với điện tử được giải phóng do nhiệt:

Trong điều kiện trên, rút ra phương trình động học cho mật độ điện tử ở điều kiện cân bằng dưới tác dụng chiếu sáng:

(7.10)

Độ dẫn tương ứng với nồng độ điện tử ở điều kiện cân bằng:

(7.11)

Vật liệu chế tạo

Tế bào quang dẫn được chế tạo các bán dẫn đa tinh thể đồng nhất hoặc đơn tinh thể, bán dẫn riêng hoặc bán dẫn pha tạp.

- Đa tinh thể: CdS, CdSe, CdTe.

PbS, PbSe, PbTe.

- Đơn tinh thể: Ge, Si tinh khiết hoặc pha tạp Au, Cu, Sb, In.

SbIn, AsIn, PIn, cdHgTe.

Vùng phổ làm việc của các vật liệu này biểu diễn trên hình 7.5.

Hình 7.5: Vùng phổ làm việc của một số vật liệu quang dẫn

Các đặc trưng

- Điện trở : Giá trị điện trở tối RC0 của các quang điện trở phụ thuộc rất lớn vào hình dạng hình học, kích thước, nhiệt độ và bản chất hoá lý của vật liệu chế tạo. Các chất PbS, CdS, CdSe có điện trở tối rất lớn (từ 104  - 109  ở 25oC), trong khi đó SbIn, SbAs, CdHgTe có điện trở tối tương đối nhỏ ( từ 10 - 103 ở 25oC). Điện trở Rc của cảm biến giảm rất nhanh khi độ rọi tăng lên. Trên hình 2.6 là một ví dụ về sự thay đổi của điện trở cảm biến theo độ rọi sáng.

Hình 7.6: Sự phụ thuộc của điện trở vào độ rọi sáng

Tế bào quang dẫn có thể coi như một mạch tương đương gồm hai điện trở Rc0 và Rcp mắc song song:

(7.12)

Trong đó:

Rco - điện trở trong tối.

Rcp - điện trở khi chiếu sáng: Rcp=aΦ-y

a - hệ số phụ thuộc vào bản chất vật liệu, nhiệt độ, phổ bức xạ.

γ - hệ số có giá trị từ 0,5 - 1.

Thông thường Rcp <<Rc0, nên có thể coi Rc=Rcp. Công thức (7.12) cho thấy sự phụ thuộc của điện trở của tế bào quang dẫn vào thông lượng ánh sáng là không tuyến tính, tuy nhiên có thể tuyến tính hóa bằng cách sử dụng một điện trở mắc song song với tế bào quang dẫn. Mặt khác, độ nhạy nhiệt của tế bào quang dẫn phụ thuộc vào nhiệt độ, khi độ rọi càng lớn độ nhạy nhiệt càng nhỏ.

- Độ nhạy: Theo sơ đồ tương đương của tế bào quang dẫn, độ dẫn điện của tế bào quang dẫn là tổng độ dẫn trong tối và độ dẫn khi chiếu sáng:

(7.13)

Trong đó:

- Gco là độ dẫn trong tối: Gco = 1/Rco.

- Gcp là điện trở khi chiếu sáng: Gco = 1/Rcp = Φγ/a.

Khi đặt điện áp V vào tế bào quang dẫn, dòng điện qua mạch:

(7.14)

Trong điều kiện sử dụng thông thường I0<<IP, do đó dòng quang điện của tế bào quang dẫn xác định bởi biểu thức:

(7.15)

Đối với luồng bức xạ có phổ xác định, tỉ lệ chuyển đổi tĩnh:

(7.16)

Và độ nhạy:

(7.17)

Từ hai biểu thức (7.16) và (7.17) có thể thấy:

- Tế bào quang dẫn là một cảm biến không tuyến tính, độ nhạy giảm khi bức xạ tăng (trừ khi γ =1).

- Khi điện áp đặt vào đủ nhỏ, độ nhạy tỷ lệ thuận với điện áp đặt vào tế bào quang dẫn. Khi điện áp đặt vào lớn, hiệu ứng Joule làm tăng nhiệt độ, dẫn đến độ nhạy giảm (hình 7.7).

Trường hợp bức xạ ánh sáng là đơn sắc, Ip phụ thuộc vào ?, độ nhạy phổ của tế bào quang dẫn xác định nhờ đường cong biểu diễn sự phụ thuộc của hồi đáp vào bước sóng (hình 7.8a)

Hình 7.7: ảnh hưởng của nhiệt độ đến độ nhạy của tế bào quang dẫn

Hình 7.8: Độ nhạy của tế bào quang dẫn

a) Đường cong phổ hồi đáp b) Sự thay đổi của độ nhạy theo nhiệt độ

(7.18)

Độ nhạy phổ của tế bào quang dẫn là hàm phụ thuộc nhiệt độ nguồn sáng, khi nhiệt độ tăng độ nhạy phổ tăng.

Khi bức xạ không phải là đơn sắc, dòng Ip và do đó độ nhạy toàn phần phụ thuộc phổ bức xạ (hình 7.8b).

Đặc điểm và ứng dụng

Đặc điển chung của các tế bào quang dẫn:

- Tỷ lệ chuyển đổi tĩnh cao.

- Độ nhạy cao.

- Hồi đáp phụ thuộc không tuyến tính vào thông lượng.

- Thời gian hồi đáp lớn.

- Các đặc trưng không ổn định do già hoá.

- Độ nhạy phụ thuộc nhiệt độ.

- Một số loại đòi hỏi làm nguội.

Trong thực tế, tế bào quang dẫn được dùng trong hai trường hợp:

- Điều khiển rơ le: khi có bức xạ ánh sáng chiếu lên tế bào quang dẫn, điện trở của nó giảm đáng kể, cho dòng điện chạy qua đủ lớn, được sử dụng trực tiếp hoặc qua khuếch đại để đóng mở rơle (hình 7.9).

- Thu tín hiệu quang: dùng tế bào quang dẫn để thu và biến tín hiệu quang thành xung điện. Các xung ánh sáng ngắt quảng được thể hiện qua xung điện, trên cơ sở đó có thể lập các mạch đếm vật hoặc đo tốc độ quay của đĩa.

Hình 7.9: Dùng tế bào quang dẫn điều khiển rơle

a) Điều khiển trực tiếp b) Điều khiển thông qua tranzito khuếch đại

0