Bài tập trắc nghiệm Hình 11: Phép biến hình. Phép tịnh tiến (phần 1)
Câu 1: Phép biến hình biến điểm M thành điểm M’ thì với mỗi điểm M có: A. Ít nhất một điểm M’ tương ứng B. Không quá một điểm M’ tương ứng C. Vô số điểm M’ tương ứng D. Duy nhất một điểm M’ tương ứng Câu 2: Cho tam giác ABC ...
Câu 1: Phép biến hình biến điểm M thành điểm M’ thì với mỗi điểm M có:
A. Ít nhất một điểm M’ tương ứng
B. Không quá một điểm M’ tương ứng
C. Vô số điểm M’ tương ứng
D. Duy nhất một điểm M’ tương ứng
Câu 2: Cho tam giác ABC nội tiếp đường trong (O). Qua O kẻ đường thẳng d. Quy tắc nào sau đây là một phép biến hình.
A. Quy tắc biến O thành giao điểm của d với các cạnh tam giác ABC
B. Quy tắc biến O thành giao điểm của d với đường tròn O
C. Quy tắc biến O thành hình chiếu của O trên các cạnh của tam giác ABC
D. Quy tắc biến O thành trực tâm H, biến H thành O và các điểm khác H và O thành chính nó.
Câu 3: Cho hình vuông ABCD có M là trung điểm của BC. Phép tịnh tiến theo vecto v→ biến M thành A thì v→ bằng:
Câu 4: Cho tam giác ABC có trực tâm H, nội tiếp đường tròn (O), BC cố định, I là trung điểm của BC. Khi A di động trên (O) thì quỹ tích H là đường tròn (O’) là ảnh của O qua phép tịnh tiến theo vecto v→ bằng:
A. IH→ B. AO→ C. 2OI→ D. 1/2 BC→
Câu 5:Mặt phẳng tọa độ, phép tịnh tiến theo vecto v→(2; -3) biến đường thẳng d: 2x + 3y - 1 = 0 thành đường thẳng d’ có phương trình
A. 3x + 2y - 1 = 0
B. 2x + 3y + 4 = 0
C. 3x + 2y + 1 = 0
D. 2x + 3y + 1 = 0
Đáp án và Hướng dẫn giải
1-D | 2-D | 3-C | 4-C | 5-B |
Câu 1:
Hướng dẫn giải:quy tắc đặt tương ứng mỗi điểm M của mặt phẳng với một điểm xác định duy nhất M’ của mặt phẳng đó gọi là phép biến hình trong mặt phẳng. chọn đáp án: D
Câu 2:
Các quy tắc A, B, C đều biến O thành nhiều hơn một điểm nên đó không phải là phép biến hình. Quy tắc D biến O thành điểm H duy nhất nên đó là phép biến hình. Chọn đáp án D
Câu 3:
Chọn đáp án C.
Nhận xét: phương án A. 1/2 AD→ + DC→ = BM→ + AB→ = AM→ ngược hướng với v→ = MA→;
Phương án B. AB→ + AC→ = 2AM→ (quy tắc trung tuyến)
Phương án D. 1/2 CB→ + AB→ = CM→ + DC→ = DM→
Câu 4:
Gọi A’ là điểm đối xứng với A qua O. Ta có: BH // A’C suy ra BHCA’ là hình bình hành do đó HA’ cắt BC tại trung điểm I của BC. Mà O là trung điểm của AA’ suy ra OI là đường trung bình của tam giác AHA’ suy ra AH→ = 2OI→
Chọn đáp án C
Cách 2: Gọi B’ là điểm đối xứng với B qua O, chứng minh AHCB’ là hình bình hành rồi suy ra AH→ = BC→ = 2OI→
Câu 5:
Phép tịnh tiến theo vecto v→(2; -3) biến điểm M (x; y) thành điểm M’(x’; y’) thì:
thay vào phương trình d được:
2(x' - 2) + 3(y' + 3) - 1 = 0 ⇒ 2x' + 3y' + 4 = 0
hay 2x + 3y + 4 = 0.
Chọn đáp án B.
Nhận xét: Cách trên dựa vào định nghĩa phép tịnh tiến. có thể dựa vào tính chất phép tịnh tiến . Phép tịnh tiến biến đường thẳng thành đường thẳng song song với nó, như sau (cách 2): Lấy điểm M(5; -3) thuộc d. phép tịnh tiến theo vecto v→(2; -3) biến điểm M(5; -3) thành điểm M’ (7; -6). Phương trình d’ qua M’ và song song với d (có cùng vecto pháp tuyến với d):
2(x - 7) + 3(y + 6) = 0 ⇒ 2x + 3y + 4 = 0