08/05/2018, 16:59

Bài 84 trang 90 SBT Toán 8 Tập 1

Bài 7: Hình bình hành : Hình dưới cho ABCD là hình bình hành. Chứng minh rằng: a. EGFH là hình bình hành. b. Các đường thẳng AC, BD, EF, GH đồng quy. Lời giải: a. Xét ΔAEH và ΔCFG: AE = CF (gt) ∠A = ∠C (tính chất hình bình hành) ...

Bài 7: Hình bình hành

: Hình dưới cho ABCD là hình bình hành. Chứng minh rằng:

a. EGFH là hình bình hành.

b. Các đường thẳng AC, BD, EF, GH đồng quy.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a. Xét ΔAEH và ΔCFG:

AE = CF (gt)

∠A = ∠C (tính chất hình bình hành)

AE = CF (vì AD = BC và DH = BG)

Do đó: ΔAEH = ΔCFG (c.g.c)

⇒ EH = FG

Xét ΔBEG và ΔDFH, ta có:

DH = BG (gt)

∠B = ∠D (tính chất hình bình hành)

BE = DF (vì AD = CD và AE = CF)

Do đó: ΔBEG = ΔDFH (c.g.c) ⇒ EG = FH

Suy ra: Tứ giác EGFH là hình bình hành (vì có các cặp cạnh đối bằng nhau)

b. Gọi O là giao điểm của AC và EF

Xét tứ giác AECF, ta có: AB // CD (gt) hay AE // CF

AE = CF (gt)

Suy ra: Tứ giác AECF là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau)

⇒ O là trung điểm của AC và EF

Tứ giác ABCD là hình bình hành có O là trung điểm AC nên O cũng là trung điểm của BD.

Tứ giác EFGH là hình bình hành có O là trung điểm EF nên O cũng là trung điểm của GH.

Vậy AC, BD, EF, GH đồng quy tại O.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)

0