Bài 24 trang 218 Sách bài tập (SBT) Toán Đại số 10
Rút gọn ...
Rút gọn
Rút gọn
a) ({{1 + cos a} over {1 - cos a}}{ an ^2}{a over 2} - {cos ^2}a)
b) (4{cos ^4}a - 2cos 2a - {1 over 2}cos 4a)
c) ({sin ^2}aleft( {1 + {1 over {sin a}} + cot a} ight)left( {1 - {1 over {sin a}} + cot a} ight))
d) ({{cos 2a} over {{{cos }^4}a - {{sin }^4}a}} - {{{{cos }^4}a + {{sin }^4}a} over {1 - {1 over 2}{{sin }^2}2a}})
Gợi ý làm bài
a)
(eqalign{
& {{1 + cos a} over {1 - cos a}}{ an ^2}{a over 2} - {cos ^2}a cr
& = {{2{{cos }^2}{a over 2}} over {2{{sin }^2}{a over 2}}}{ an ^2}{a over 2} - {cos ^2}a = {sin ^2}a cr} )
b) (4{cos ^4}a - 2cos 2a - {1 over 2}cos 4a)
( = 4{cos ^4}a - 2(2{cos ^2}a - 1) - {1 over 2}(2{cos ^2}2a - 1))
( = 4{cos ^4}a - 4{cos ^2}a + 2 - {(2{cos ^2}a - 1)^2} + {1 over 2})
( = 4{cos ^4}a - 4{cos ^2}a + {5 over 2} - 4{cos ^4}a + 4{cos ^2}a - 1 = {3 over 2})
c) ({sin ^2}a(1 + {1 over {sin a}} + cot a)(1 - {1 over {sin a}} + cot a))
(eqalign{
& = {sin ^2}aleft[ {{{(1 + cota)}^2} - {1 over {{{sin }^2}a}}}
ight] cr
& = {sin ^2}a(1 + {cot ^2}a + 2cot a) - 1 cr} )
(eqalign{
& = {sin ^2}a + {cos ^2}a + 2{sin ^2}a{{cos a} over {sin a}} - 1 cr
& = sin 2a cr} )
d) ({{cos 2a} over {{{cos }^4}a - {{sin }^4}a}} - {{{{cos }^4}a + {{sin }^4}a} over {1 - {1 over 2}{{sin }^2}2a}})
(= {{{{cos }^2}a - {{sin }^2}a} over {({{cos }^2}a + {{sin }^2}a)({{cos }^2}a - {{sin }^2}a)}} - {{{{cos }^4}a + {{sin }^4}a} over {1 - {1 over 2}{{(2sin acos a)}^2}}})
( = 1 - {{{{cos }^4}a + {{sin }^4}a} over {{{sin }^2}a - si{n^2}aco{s^2}a + {{cos }^2}a - {{sin }^2}a{{cos }^2}a}})
( = 1 - {{{{cos }^4}a + {{sin }^4}a} over {{{sin }^2}a(1 - co{s^2}a) + {{cos }^2}a(1 - {{sin }^2}a)}} = 0)
Sachbaitap.net