27/04/2018, 11:41

Bài 2.38 trang 126 Sách bài tập (SBT) Giải tích 12

Giải phương trình: ...

Giải phương trình:

Giải phương trình: 

(f(x) = 2sqrt {x + 2}  - {x^3} + 4{log _2}(8 - {x^2}) + {log _{frac{1}{2}}}(sqrt {1 + x}  + sqrt {1 - x} ) - 2 = 0)

(Đề thi Đại học năm 2011, khối D)

Hướng dẫn làm bài:

Điều kiện: ( - 1 le x le 1)

Phương trình đã cho tương đương với:

(eqalign{
& {log _2}(8 - {x^2}) = {log _2}{ m{[}}4(sqrt {1 + x} + sqrt {1 - x} ){ m{]}} cr
& Leftrightarrow {(8 - {x^2})^2} = 16(2 + 2sqrt {1 - {x^2}} ) cr} )

Đặt (t = sqrt {1 - {x^2}} )  ta được :

(eqalign{
& {t^4} + 14{t^2} - 32t + 17 = 0 cr 
& Leftrightarrow {(t - 1)^2}({t^2} + 2t + 17) = 0 cr 
& Leftrightarrow t = 1 cr} )

Suy ra x = 0. Vậy phương trình có nghiệm x = 0

Sachbaitap.com

0