Bài 2.28 trang 92 Sách bài tập (SBT) Toán Hình học 10
Trong mặt phẳng Oxy cho bốn điểm ...
Trong mặt phẳng Oxy cho bốn điểm
Trong mặt phẳng Oxy cho bốn điểm A(3;4), B(4;1), C(2; - 3), D( - 1;6). Chứng minh tứ giác ABCD nội tiếp được trong một đường tròn.
Gợi ý làm bài
Muốn chứng minh tứ giác ABCD nội tiếp được trong một đường tròn, ta chứng minh tứ giác này có hai góc đối bù nhau. Khi đó hai góc này có cô sin đối nhau.
Theo giả thiết ta có:
(eqalign{
& overrightarrow {AB} = (1; - 3),overrightarrow {AD} = ( - 4;2), cr
& overrightarrow {CB} = (2;4);overrightarrow {CD} = ( - 3;9) cr} )
Do đó:
(eqalign{
& cos (overrightarrow {AB} ,overrightarrow {AD} ) = {{overrightarrow {AB} .overrightarrow {AD} } over {left| {overrightarrow {AB} }
ight|.left| {overrightarrow {AD} }
ight|}} cr
& = {{1.( - 4) + ( - 3).2} over {sqrt {1 + 9} .sqrt {16 + 4} }} = {{ - 10} over {sqrt {200} }} = - {1 over {sqrt 2 }} cr} )
(eqalign{
& cos (overrightarrow {CB} ,overrightarrow {AD} ) = {{overrightarrow {CB} .overrightarrow {CD} } over {left| {overrightarrow {CB} }
ight|.left| {overrightarrow {CD} }
ight|}} cr
& = {{2.( - 3) + 4.9} over {sqrt {4 + 16} .sqrt {9 + 81} }} = {{30} over {sqrt {1800} }} = {1 over {sqrt 2 }} cr} )
Vì (cos (overrightarrow {AB} ,overrightarrow {AD} ) = - cos (overrightarrow {CB} ,overrightarrow {CD} )) nên hai góc này bù nhau. Vậy tứ giác ABCD nội tiếp được trong một đường tròn.
Sachbaitap.net