Bài 19 trang 7 SBT Toán 8 Tập 1
Bài 3 - 4 - 5: Những hằng đẳng thức đáng nhớ : Tìm giá trị nhỏ nhất của các đa thức: a. P = x 2 – 2x + 5 b. Q = 2x 2 – 6x c. M = x 2 + y 2 – x + 6y + 10 Lời giải: a. Ta có: P = x 2 – 2x + 5 = x 2 – 2x + 1 + 4 = (x – 1) 2 + 4 Vì (x – 1) 2 ...
Bài 3 - 4 - 5: Những hằng đẳng thức đáng nhớ
: Tìm giá trị nhỏ nhất của các đa thức:
a. P = x2 – 2x + 5
b. Q = 2x2 – 6x
c. M = x2 + y2 – x + 6y + 10
Lời giải:
a. Ta có: P = x2 – 2x + 5 = x2 – 2x + 1 + 4 = (x – 1)2 + 4
Vì (x – 1)2 ≥ 0 nên (x – 1)2 + 4 ≥ 4
Suy ra: P = 4 là giá trị bé nhất ⇒ (x – 1)2 = 0 ⇒ x = 1
Vậy P = 4 là giá trị bé nhất của đa thức khi x = 1.
b. Ta có: Q = 2x2 – 6x = 2(x2 – 3x) = 2(x2 – 2.3/2 x + 9/4 - 9/4 )
= 2[(x - 2/3 ) - 9/4 ] = 2(x - 2/3 )2 - 9/2
Vì (x - 2/3 )2 ≥ 0 nên 2(x - 2/3 )2 ≥ 0 ⇒ 2(x - 2/3 )2 - 9/2 ≥ - 9/2
Suy ra: Q = - 9/2 là giá trị nhỏ nhất ⇒ (x - 2/3 )2 = 0 ⇒ x = 2/3
Vậy Q = - 9/2 là giá trị nhỏ nhất của đa thức khi x = 2/3 .
c. Ta có: M = x2 + y2 – x + 6y + 10 = (y2 + 6y + 9) + (x2 – x + 1)
= (y + 3)2 + (x2 – 2.1/2 x + 1/4 + 3/4 ) = (y + 3)2 + (x - 1/2 )2 + 3/4
Vì (y + 3)2 ≥ 0 và (x - 1/2 )2 ≥ 0 nên (y + 3)2 + (x - 1/2 )2 ≥ 0
⇒ (y + 3)2 + (x - 12 )2 + 3/4 ≥ 3/4
⇒ M = 3/4 là giá trị nhỏ nhất khi (y + 3)2 =0
⇒ y = -3 và (x - 1/2 )2 = 0 ⇒ x = 1/2
Vậy M = 3/4 là giá trị nhỏ nhất tại y = -3 và x = 1/2
Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)