08/05/2018, 17:05

Bài 156 trang 99 SBT Toán 8 Tập 1

Bài 12: Hình vuông : Cho hình vuông ABCD. Vẽ điểm E trong hình vuông sao cho ∠(EDC) = ∠(ECD) = 15 o a. Vẽ điểm F trong hình vuông sao cho ∠(FAD) = ∠(FDA) = 15 o . Chứng minh rằng tam giác DEF là tam giác đều. b. Chứng minh rằng tam giác ABE là tam giác đều. ...

Bài 12: Hình vuông

: Cho hình vuông ABCD. Vẽ điểm E trong hình vuông sao cho ∠(EDC) = ∠(ECD) = 15o

a. Vẽ điểm F trong hình vuông sao cho ∠(FAD) = ∠(FDA) = 15o. Chứng minh rằng tam giác DEF là tam giác đều.

b. Chứng minh rằng tam giác ABE là tam giác đều.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a. Xét ΔEDC và ΔFDA, tacó: ∠(FDC) = ∠(FDA) = 15o

DC = AD (gt)

∠(ECD) = ∠(FDA) = 15o

Suy ra: ΔEDC = ΔFDA (g.c.g)

⇒ DE = DF

⇒ ΔDEF cân tại D

Lại có: ∠(ADC) = ∠(FDA) + ∠(FDE) + ∠(EDC)

⇒ ∠(FDE) = ∠(ADC) -(∠(FDA) + ∠(EDC) )= 90o - (15o + 15o) = 60o

Vậy ΔDEF đều.

b. Xét ΔADE và ΔBCE , ta có:

ED = EC (vì AEDC cân tại E)

∠(ADE) = ∠(BCE) = 75o

AD = BC (gt)

Suy ra: ΔADE = ΔBCE (c.g.c)

⇒ AE = BE (1)

* Trong ΔADE, ta có:

∠(AFD) = 180o – (∠(FAD) + ∠(FDA) ) = 180o – (15o + 15o) = 150o

∠(AFD) + ∠(DFE) + ∠(AFE) = 360o

⇒ ∠(AFE) = 360o - (∠(AFD) + ∠(DFE) ) = 360o – (150o + 60o) = 150o

* Xét ΔAFD và ΔAEF, ta có: AF cạnh chung

∠(AFD) = ∠(AFE) = 150o

DE = EF (vì ΔDFE đều)

Suy ra: ΔAFD = ΔAEF (c.g.c) ⇒ AE = AD

Mà AD = AB (gt)

Suy ra: AE = AB (2)

Từ (1) và (2) suy ra: AE = AB = BE

Vậy ΔAEB đều.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)

0