08/05/2018, 17:00

Bài 120 trang 95 SBT Toán 8 Tập 1

Bài 9: Hình chữ nhật : Cho tam giác ABC vuông tại A, điểm D thuộc cạnh AC. Gọi E, F, G theo thứ tự là trung điểm của BD, BC, DC. Chứng minh rằng tứ giác AEFG là hình thang cân. Lời giải: * Trong ΔBDC, ta có: E là trung điểm của BD (gt) F là trung điểm ...

Bài 9: Hình chữ nhật

: Cho tam giác ABC vuông tại A, điểm D thuộc cạnh AC. Gọi E, F, G theo thứ tự là trung điểm của BD, BC, DC. Chứng minh rằng tứ giác AEFG là hình thang cân.

Lời giải:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong ΔBDC, ta có:

E là trung điểm của BD (gt)

F là trung điểm của BC (gt)

Suy ra EF là đường trung bình của tam giác BOD

⇒ EF // DC hay EF // AG

Suy ra tứ giác AEFG là hình thang

G là trung điểm của DC (gt)

Nên FG là đường trung bình của tam giác BCD

⇒ FG // BD ⇒ ∠G1= ∠D1(đồng vị) (1)

* Trong tam giác ABD vuông tại A có AE là trung tuyến thuộc cạnh huyền BD

⇒ AE = ED = 1/2 BD (tính chất tam giác vuông) (2)

Từ (1) và (2) suy ra: ∠A1= ∠G1

Vậy hình thang AEFG là hình thang cân.

Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)

0