08/05/2018, 13:56

Bài 109 trang 153 SBT Toán 7 Tập 1

Ôn tập chương 2 Bài 109 trang 153 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A, kẻ BH ⊥AC. Gọi D là một điểm thuộc cạnh đáy BC. Kẻ DE ⊥ AC, DE⊥AB. Chứng minh rằng DE + DF = BH Lời giải: Kẻ DK ⊥ BH Ta có: BH ⊥AC(gt) Suy ra: ...

Ôn tập chương 2

Bài 109 trang 153 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A, kẻ BH ⊥AC. Gọi D là một điểm thuộc cạnh đáy BC. Kẻ DE ⊥ AC, DE⊥AB.

Chứng minh rằng DE + DF = BH

Lời giải:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ DK ⊥ BH

Ta có: BH ⊥AC(gt)

Suy ra: DK // AC (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song)

=> ∠KDB =C (hai góc đồng vị)

VìΔABC cân tại A nên ∠B =∠C (tính chất tam giác cân)

Suy ra: ∠KDB =B

Xét hai tam giác vuông BFD và DKB, ta có:

∠BFD =∠DKB

BD cạnh huyền chung

∠FBD =∠KDB (chứng minh trên)

Suy ra:ΔBFD=ΔDKB(cạnh huyền góc nhọn)

=> DF = BK (hai cạnh tương ứng)(1)

Nối DH. XétΔDEHvàΔDKH, ta có:

∠DEH =∠DKH =90°

DH cạnh huyền chung

∠EHD =∠KDH (hai góc so le trong)

Suy ra:ΔDEH=ΔDKH( cạnh huyền , góc nhọn)

Suy ra: DE = HK ( hai cạnh tương ứng) (2)

Mặt khác : BH = BK + KH (3)

Từ (1), (2) và (3) suy ra: DF = DE = BH

Các bài giải bài tập sách bài tập Toán 7 (SBT Toán 7) Bài Ôn Tập Chương 2 Hình Học

0