27/04/2018, 08:42

Bài 1.49 trang 45 Sách bài tập (SBT) Toán Hình học 10

Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của hai cạnh AB và CD. Nối AF và CE, hai đường thẳng này cắt đường chéo BD lần lượt tại M và N. ...

Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của hai cạnh AB và CD. Nối AF và CE, hai đường thẳng này cắt đường chéo BD lần lượt tại M và N.

Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của hai cạnh AB và CD. Nối AF và CE, hai đường thẳng này cắt đường chéo BD lần lượt tại M và N. Chứng minh (overrightarrow {DM}  = overrightarrow {MN}  = overrightarrow {NB} )

Gợi ý làm bài

(h.1.63)

AECF là hình bình hành => EN // AM

E là trung điểm của AB => N là trung điểm của BM, do đó MN = NB.

Tương tự, M là trung điểm của DN, do đó DM = MN.

Vậy (overrightarrow {DM}  = overrightarrow {MN}  = overrightarrow {NB} )

Sachbaitap.net

0