Bài 59 trang 165 SBT Toán 9 Tập 1
Bài 6: Tính chất của hai tiếp tuyến cắt nhau Bài 59 trang 165 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp. r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng: AB + AC = 2(R + r) Lời giải: ...
Bài 6: Tính chất của hai tiếp tuyến cắt nhau
Bài 59 trang 165 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC vuông tại A. Gọi R là bán kính của đường tròn ngoại tiếp. r là bán kính của đường tròn nội tiếp tam giác ABC. Chứng minh rằng: AB + AC = 2(R + r)
Lời giải:
Vì tam giác ABC vuông tại A nên tâm đường tròn ngoại tiếp tam giác ABC là trung điểm của cạnh huyền BC.
Ta có: BC = 2R
Giả sử đường tròn (O) tiếp với AB tại D, AC tại E và BC tại F
Theo kết quả câu a) bài 58, ta có ADOE là hình vuông.
Suy ra: AD = AE = EO = OD = r
Theo tính chất hai tiếp tuyến cắt nhau ta có:
AD = AE
BD = BF
CE = CF
Ta có: 2R + 2r = BF + FC + AD + AE
= (BD + AD) + (AE + CE)
= AB + AC
Vậy AB = AC = 2(R + r)
Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)