Góc ở tâm. Số đo cung liên hệ giữa cung và dây
A. Phương pháp giải 1. Định nghĩa - Góc có đỉnh trùng với tâm đường tròn gọi là góc ở tâm. - Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. - Số đo của cung lớn bằng trừ đi số đo của cung nhỏ. - Số đo của nửa đường tròn bằng. 2. Trong một đường ...
A. Phương pháp giải
1. Định nghĩa
- Góc có đỉnh trùng với tâm đường tròn gọi là góc ở tâm.
- Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
- Số đo của cung lớn bằng trừ đi số đo của cung nhỏ.
- Số đo của nửa đường tròn bằng.
2. Trong một đường tròn hay trong hai đường tròn bằng nhau:
- Hai cung bằng nhau căng hai dây bằng nhau.
- Hai dây bằng nhau căng hai cung bằng nhau.
3. Nếu C là một điểm nằm trên cung AB thì:
Sđ AB = Sđ AC + Sđ CB
4. Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:
- Hai cung bằng nhau căng hai dây bằng nhau.
- Hai dây bằng nhau căng hai cung bằng nhau.
5. Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:
- Cung lớn hơn căng dây lớn hơn.
- Dây lớn hơn căng cung lớn hơn.
B. Bài tập tự luận
Bài 1: Cho đường tròn (O, R) và điểm M nằm ngoài đường tròn đó. Gọi MA, MB là hai tiếp tuyến với đường tròn tại A và B. Tính số đo của góc ở tâm tạo bởi hai bán kính OA và OB nếu:
a) ∠AMB = 70o
b) MA = R
c) MO = 2R
Hướng dẫn giải
Vì MA và MB là các tiếp tuyến của đường tròn (O) tại A và B nên: MA ⊥ OA, MB ⊥ OB
Suy ra: ∠MAO = ∠MBO = 90o
a)
Xét tứ giác MAOB có:
∠AMB + ∠AOB + ∠MAO + ∠MBO = 360o
⇔ ∠AOB = 360o - (∠AMB + ∠MAO + ∠MBO)
= 360o - (70o+ 90o + 90o)
= 110o
Vậy số đo góc ở tâm tạo bởi hai bán kính OA, OB bằng 110o .
b)
Nếu MA = R
Xét ΔMAO có: MA = AO = R và ∠MAO = 90o
=> Δ MAO vuông cân tại A
=> ang;MOA = 45o
Vậy ∠AOB = 2.∠MOA = 90o
c)
Nếu MO = 2R
Xét ΔMAO vuông tại A có: MO = 2.AO
=> ∠AMO = 30o => ∠AOM = 60o
Vậy: ∠AOB = 2.∠AOM = 120o
Bài 2: Cho đường tròn (O; R) và dây AB không đi qua O. Trên dây AB lấy các điểm M, N sao cho AM = MN = NB. Tia OM, ON cắt (O) lần lượt tại C và D.
Hướng dẫn giải
Thât vậy, xét ΔAOM và ΔBON có:
OA = OB = R
∠OAM = ∠OBN (do ΔOAB cân tại O)
AM = BN (gt)
Suy ra ΔAOM = ΔBON(c-g-c)
Suy ra ∠AOM = ∠BON (hai góc tương ứng)
Gọi I là trung điểm của OB. Suy ra NI là đường trung bình của ΔOBM nên NI // OM => ∠MON = ∠ONI(so le trong) (1)
Mặt khác ta có: OB = OC = R, mà M ∈ OC => OM < OB hay NI < OI.
Xét ΔONI có NI < OI nên: ∠NOI < ∠ONI (2)
Từ (1) và (2) suy ra ∠NOI < ∠MON
Bài 3: Cho hai đường tròn bằng nhau (O) và (O’) cắt nhau tại A và B. Kẻ dây AM của đường tròn (O) và dây BN của đường tròn (O’) sao cho AM // BN.
Hướng dẫn giải
Vì AM // BN (gt) => ∠MAB = ∠ABN (so le trong) (1)
Mặt