Giải bài 11 trang 104 Toán 9 Tập 1
Bài 2: Đường kính và dây của đường tròn Bài 11 (trang 104 SGK Toán 9 Tập 1): Cho đường tròn (O) đường kính AB, dây CD không cắt đường kính AB, Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH = DK. Gợi ý: Kẻ OM vuông góc với ...
Bài 2: Đường kính và dây của đường tròn
Bài 11 (trang 104 SGK Toán 9 Tập 1): Cho đường tròn (O) đường kính AB, dây CD không cắt đường kính AB, Gọi H và K theo thứ tự là chân các đường vuông góc kẻ từ A và B đến CD. Chứng minh rằng CH = DK.
Gợi ý: Kẻ OM vuông góc với CD.
Lời giải:
Kẻ OM ⊥ CD.
Vì AH // BK (cùng vuông góc HK) nên tứ giác AHKB là hình thang.
Hình thang AHKB có:
AO = OB (bán kính).
OM // AH // BK (cùng vuông góc HK)
=> OM là đường trung bình của hình thang.
=> MH = MK (1)
Vì OM ⊥ CD nên MC = MD (2)
Từ (1) và (2) suy ra CH = DK. (đpcm)
Tham khảo lời giải các bài tập Toán 9 bài 2