Câu 9 trang 6 Sách bài tập Toán 8 tập 2: Chứng minh rằng :...
Chứng minh rằng . Câu 9 trang 6 Sách bài tập (SBT) Toán 8 tập 2 – Bài 1. Mở đầu về phương trình Cho phương trình (left( {{m^2} + 5m + 4} ight){x^2} = m + 4), trong đó m là một số. Chứng minh rằng : a. Khi m = – 4, phương trình nghiệm đúng với mọi giá trị của ẩn. b. Khi m = – 1, ...
Cho phương trình (left( {{m^2} + 5m + 4} ight){x^2} = m + 4), trong đó m là một số.
Chứng minh rằng :
a. Khi m = – 4, phương trình nghiệm đúng với mọi giá trị của ẩn.
b. Khi m = – 1, phương trình vô nghiệm.
c. Khi m = – 2 hoặc m = – 3, phương trình cũng vô nghiệm.
d. Khi m = 0, phương trình nhận x = 1 và x = – 1 là nghiệm.
Giải:
a. Thay m = – 4 vào hai vế của phương trình, ta có:
– Vế trái: (left[ {{{left( { – 4} ight)}^2} + 5.left( { – 4} ight) + 4} ight]{x^2} = 0{x^2})
– Vế phải: – 4 + 4 = 0
Phương trình đã cho trở thành: (0{x^2} = 0)
Vậy phương trình nghiệm đúng với mọi giá trị của x.
b. Thay m = – 1 vào hai vế của phương trình, ta có:
– Vế trái: (left[ {{{left( { – 1} ight)}^2} + 5.left( { – 1} ight) + 4} ight]{x^2} = 0{x^2})
– Vế phải: – 1 + 4 = 3
Phương trình đã cho trở thành: $0{x^2} = 3$
Không có giá trị nào của x thỏa mãn phương trình.
Vậy, phương trình đã cho vô nghiệm.
c. Thay m = – 2 vào hai vế của phương trình, ta có:
– Vế trái: (left[ {{{left( { – 2} ight)}^2} + 5.left( { – 2} ight) + 4} ight]{x^2} = – 2{x^2})
– Vế phải: – 2 + 4 = 2
Phương trình đã cho trở thành: ( – 2{x^2} = 2)
Không có giá trị nào của x thỏa mãn phương trình vì vế phải âm còn vế trái dương.
Vậy phương trình đã cho vô nghiệm.
Thay m = – 3 vào hai vế của phương trình, ta có:
– Vế trái: (left[ {{{left( { – 3} ight)}^2} + 5.left( { – 3} ight) + 4} ight]{x^2} = – 2{x^2})
– Vế phải: – 3 + 4 = 1
Phương trình đã cho trở thành: ( – 2{x^2} = 1)
Không có giá trị nào của x thỏa mãn phương trình vì vế phải âm còn vế trái dương.
Vậy phương trình đã cho vô nghiệm.
d. Khi m = 0, phương trình đã cho trở thành: (4{x^2} = 4)
Thay x = 1 và x = -1 vào vế trái của phương trình, ta có:
x = 1: 4.12 = 4
x = -1: 4(-1)2 = 4
Vì vế trái bằng vế phải nên x = 1 và x = -1 là nghiệm của phương trình.