Câu 63 đến câu 71 trang 179 đến 182 SGK Đại số và Giải tích 11 Nâng cao
hãy chọn kết quả đúng trong các kết quả đã cho. ...
hãy chọn kết quả đúng trong các kết quả đã cho.
Câu 63 trang 179 SGK Đại số và Giải tích 11 Nâng cao
a. (lim {{n - 2sqrt n sin 2n} over {2n}}) là :
A. 1
B. ({1 over 2})
C. -1
D. 0
b. (lim {{{n^2} - 3{n^3}} over {2{n^3} + 5n - 2}}) là :
A. ({1 over 2})
B. ({1 over 5})
C. ({-3 over 2})
D. 0
c.(lim {{{3^n} - 1} over {{2^n} - {2}.3^n + 1}}) là :
A. ({-1 over 2})
B. ({3 over 2})
C. ({1 over 2})
D. -1
d.(lim left( {2n - 3{n^3}} ight)) là :
A. +∞
B. −∞
C. 2
D. -3
Giải
a. (eqalign{& lim {{n - 2sqrt n sin 2n} over {2n}} = lim left( {{1 over 2} - {{sin 2n} over {sqrt n }}} ight) = {1 over 2} cr & ext{vì },left| {{{sin 2n} over {sqrt n }}} ight| le {1 over {sqrt n }},lim {1 over {sqrt n }} = 0. cr} )
Chọn B
b. (lim {{{n^2} - 3{n^3}} over {2{n^3} + 5n - 2}} = lim {{{1 over n} - 3} over {2 + {5 over {{n^2}}} - {2 over {{n^3}}}}} = - {3 over 2}.)
Chọn C
c. (lim {{{3^n} - 1} over {{2^n} - {{2.3}^n} + 1}} = lim {{1 - {{left( {{1 over 3}} ight)}^n}} over {{{left( {{2 over 3}} ight)}^n} - 2 + {{left( {{1 over 3}} ight)}^n}}} = - {1 over 2})
Chọn A
d. (lim left( {2n - 3{n^3}} ight) = lim {n^3}left( {{2 over {{n^2}}} - 3} ight) = - infty )
Chọn B
Câu 64 trang 179 SGK Đại số và Giải tích 11 Nâng cao
a.(lim {{{n^3} - 2n} over {1 - 3{n^2}}}) là :
A. ({-1 over 3})
B. ({2 over 3})
C. +∞
D. −∞
b. (lim left( {{2^n} - {5^n}} ight)) là :
A. +∞
B. 1
C. −∞
D. ({5 over 2})
c.(lim left( {sqrt {n + 1} - sqrt n } ight)) là :
A. +∞
B. −∞
C. 0
D. 1
d.(lim {1 over {sqrt {{n^2} + n} - n}}) là :
A. +∞
B. 0
C. 2
D. -2
Giải
a. (lim {{{n^3} - 2n} over {1 - 3{n^2}}} = lim {{1 - {2 over {{n^2}}}} over {{1 over {{n^3}}} - {3 over n}}} = - infty )
Chọn D
b. (lim left( {{2^n} - {5^n}} ight) = lim {5^n}left[ {{{left( {{2 over 5}} ight)}^n} - 1} ight] = - infty )
Chọn C
c. (lim left( {sqrt {n + 1} - sqrt n } ight) = lim {1 over {sqrt {n + 1} + sqrt n }} = 0)
Chọn C
d. (lim {1 over {sqrt {{n^2} + n} - n}} = lim {{sqrt {{n^2} + n} + n} over n} )
(= lim left( {sqrt {1 + {1 over n}} + 1} ight) = 2)
Chọn C
Câu 65 trang 180 SGK Đại số và Giải tích 11 Nâng cao
a.(lim {{1 - {2^n}} over {{3^n} + 1}}) là :
A. ({-2 over 3})
B. 0
C. 1
D. ({1 over 2})
b. Tổng của cấp số nhân vô hạn
( - {1 over 2},{1 over 4}, - {1 over 8},...,{{{{left( { - 1} ight)}^n}} over {{2^n}}},...)
Là :
A. ({-1 over 4})
B. ({1 over 2})
C. -1
D. ({-1 over 3})
c. Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số :
A. ({6 over 11})
B. ({46 over 90})
C. ({43 over 90})
D. ({47 over 90})
Giải
a. (lim {{1 - {2^n}} over {{3^n} + 1}} = lim {{{{left( {{1 over 3}} ight)}^n} - {{left( {{2 over 3}} ight)}^n}} over {1 + {{left( {{1 over 3}} ight)}^n}}} = 0)
Chọn B
b. Công bội (q = {{{u_2}} over {{u_1}}} = {1 over 4}:left( { - {1 over 2}} ight) = - {1 over 2})
(S = {{{u_1}} over {1 - q}} = {{ - {1 over 2}} over {1 + {1 over 2}}} = - {1 over 3})
Chọn D
c.
(eqalign{
& 0,5111... = 0,5 + 0,01 + 0,001 + ... cr
& = {1 over 2} + left( {{1 over {100}} + {1 over {1000}} + ...}
ight) = {1 over 2} + {{{1 over {100}}} over {1 - {1 over {10}}}} = {{46} over {90}} cr} )
Chọn B
Câu 66 trang 180 SGK Đại số và Giải tích 11 Nâng cao
a. Trong bốn giới hạn sau đây giới hạn nào là -1 ?
A. (lim {{2n + 3} over {2 - 3n}})
B. (lim {{{n^2} - {n^3}} over {2{n^3} + 1}})
C. (lim {{{n^2} + n} over { - 2n - {n^2}}})
D. (lim {{{n^3}} over {{n^2} + 3}})
b. Trong bốn giới hạn sau đây, giới hạn nào là +∞ ?
A. (lim {{{n^2} - 3n + 2} over {{n^2} + n}})
B. (lim {{{n^3} + 2n - 1} over {n - 2{n^3}}})
C. (lim {{2{n^2} - 3n} over {{n^3} + 3n}})
D. (lim {{{n^2} - n + 1} over {2n - 1}})
c. Trong bốn giới hạn sau đây, giới hạn nào là 0 ?
A. (lim {{{2^n} + 1} over {{{3.2}^n} - {3^n}}})
B. (lim {{{2^n} + 3} over {1 - {2^n}}})
C. (lim {{1 - {n^3}} over {{n^2} + 2n}})
D. (lim {{left( {2n + 1} ight){{left( {n - 3} ight)}^2}} over {n - 2{n^3}}})
Giải
a.
(eqalign{
& lim {{2n + 3} over {2 - 3n}} = lim {{2 + {3 over n}} over {{2 over n} - 3}} = - {2 over 3} cr
& lim {{{n^2} - {n^3}} over {2{n^3} + 1}} = lim {{{1 over n} - 1} over {2 + {1 over {{n^3}}}}} = - {1 over 2} cr
& lim {{{n^2} + n} over { - 2n - {n^2}}} = lim {{1 + {1 over n}} over { - {2 over n} - 1}}=-1 cr
& lim {{{n^3}} over {{n^2} + 3}} = + infty cr} )
Chọn C
b.
(eqalign{
& lim {{{n^2} - 3n + 2} over {{n^2} + n}} = lim {{1 - {3 over n} + {2 over {{n^2}}}} over {1 + {1 over n}}} = 1 cr
& lim {{{n^3} + 2n - 1} over {n - 2{n^3}}} = lim {{1 + {2 over {{n^2}}} - {1 over {{n^3}}}} over {{1 over {{n^2}}} - 2}} = - {1 over 2} cr
& lim {{2{n^2} - 3n} over {{n^3} + 3n}} = lim {{{2 over n} - {3 over {{n^2}}}} over {1 + {3 over {{n^2}}}}} = 0 cr
& lim {{{n^2} - n + 1} over {2n - 1}} = lim {{1 - {1 over n} + {1 over {{n^2}}}} over {{2 over n} - {1 over {{n^2}}}}} = + infty cr} )
Chọn D
c.
(eqalign{
& lim {{{2^n} + 1} over {{{3.2}^n} - {3^n}}} = lim {{{{left( {{2 over 3}}
ight)}^n} + {{left( {{1 over 3}}
ight)}^n}} over {3.{{left( {{2 over 3}}
ight)}^n} - 1}} = 0 cr
& lim {{{2^n} + 3} over {1 - {2^n}}} = lim {{1 + {3 over {{2^n}}}} over {{{left( {{1 over 2}}
ight)}^n} - 1}} = - 1 cr
& lim {{1 - {n^3}} over {{n^2} + 2n}} = - infty cr
& lim {{left( {2n + 1}
ight){{left( {n - 3}
ight)}^2}} over {n - 2{n^3}}} = - 1 cr} )
Chọn A
Câu 67 trang 180 SGK Đại số và Giải tích 11 Nâng cao
Hãy chọn kết quả đúng trong các kết quả sau đây :
a.(mathop {lim }limits_{x o - 1} {{{x^2} - 3} over {{x^3} + 2}}) là :
A. 2
B. 1
C. -2
D. ( - {3 over 2})
b.(mathop {lim }limits_{x o 3} sqrt {{{{x^2}} over {{x^3} - x - 6}}} ) là :
A. ( {1 over 2})
B. 2
C. 3
D. ({{sqrt 2 } over 2})
c.(mathop {lim }limits_{x o - 4} {{{x^2} + 3x - 4} over {{x^2} + 4x}})
là :
A. ( {5 over 4})
B. 1
C. ( - {5 over 4})
D. -1
Giải
a. (mathop {lim }limits_{x o - 1} {{{x^2} - 3} over {{x^3} + 2}} = {{1 - 3} over { - 1 + 2}} = - 2)
Chọn C
b. (mathop {lim }limits_{x o 3} sqrt {{{{x^2}} over {{x^3} - x - 6}}} = sqrt {{9 over {27 - 3 - 6}}} = {{sqrt 2 } over 2})
Chọn D
c. (mathop {lim }limits_{x o - 4} {{{x^2} + 3x - 4} over {{x^2} + 4x}} = mathop {lim }limits_{x o - 4} {{left( {x - 1} ight)left( {x + 4} ight)} over {xleft( {x + 4} ight)}} = mathop {lim }limits_{x o - 4} {{x - 1} over x} = {5 over 4})
Chọn A.
Câu 68 trang 181 SGK Đại số và Giải tích 11 Nâng cao
Hãy chọn kết quả đúng trong các kết quả sau đây :
a.(mathop {lim }limits_{x o + infty } {{2{x^2} - 3} over {{x^6} + 5{x^5}}}) là :
A. 2
B. 0
C. ( - {3 over 5})
D. -3
b.(mathop {lim }limits_{x o - infty } {{ - 3{x^5} + 7{x^3} - 11} over {{x^5} + {x^4} - 3x}}) là :
A. 0
B. -3
C. 3
D. -∞
c.(mathop {lim }limits_{x o - infty } {{ - 2{x^5} + {x^4} - 3} over {3{x^2} - 7}}) là :
A. −∞
B. -2
C. 0
D. +∞
Giải
a.
(mathop {lim }limits_{x o + infty } {{2{x^2} - 3} over {{x^6} + 5{x^5}}} = mathop {lim }limits_{x o + infty } {{{2 over {{x^4}}} - {3 over {{x^6}}}} over {1 + {5 over x}}} = 0)
Chọn B
b.
(mathop {lim }limits_{x o - infty } {{ - 3{x^5} + 7{x^3} - 11} over {{x^5} + {x^4} - 3x}} = mathop {lim }limits_{x o - infty } {{ - 3 + {7 over {{x^2}}} - {{11} over {{x^5}}}} over {1 + {1 over x} - {3 over {{x^4}}}}} = - 3)
Chọn B
c.
(mathop {lim }limits_{x o - infty } {{ - 2{x^5} + {x^4} - 3} over {3{x^2} - 7}} = mathop {lim }limits_{x o - infty } {{ - 2 + {1 over x} - {3 over {{x^5}}}} over {{3 over {{x^3}}} - {7 over {{x^5}}}}} = + infty )
Chọn D
Câu 69 trang 181 SGK Đại số và Giải tích 11 Nâng cao
Hãy chọn kết quả đúng trong các kết quả sau đây
a.(mathop {lim }limits_{x o + infty } {{x - 1} over {sqrt {{x^2} - 1} }}) là :
A. 1
B. -1
C. 0
D. +∞
b.(mathop {lim }limits_{x o 0} {{sqrt {1 - x} - 1} over x}) là :
A. ({1 over 2})
B. (-{1 over 2})
C. +∞
D. 0
c.(mathop {lim }limits_{x o 1} {{2x - 1} over {{{left( {x - 1} ight)}^2}}}) là :
A. 2
B. -1
C. +∞
D. −∞
d.(mathop {lim }limits_{x o - 1} {{{x^2} + x} over {{x^2} + 3x + 2}}) là
A. 2
B. ({2 over 3})
C. -1
D. 0
Giải
a.
(mathop {lim }limits_{x o + infty } {{x - 1} over {sqrt {{x^2} - 1} }} = mathop {lim }limits_{x o + infty } {{1 - {1 over x}} over {sqrt {1 - {1 over {{x^2}}}} }} = 1)
Chọn A
b.
(mathop {lim }limits_{x o 0} {{sqrt {1 - x} - 1} over x} = mathop {lim }limits_{x o 0} {{ - x} over {xleft( {sqrt {1 - x} + 1} ight)}} = mathop {lim }limits_{x o 0} {{ - 1} over {sqrt {1 - x} + 1}} = - {1 over 2})
Chọn B
c. (mathop {lim }limits_{x o 1} {{2x - 1} over {{{left( {x - 1} ight)}^2}}} = + infty )
Chọn C
d.
(mathop {lim }limits_{x o - 1} {{{x^2} + x} over {{x^2} + 3x + 2}} = mathop {lim }limits_{x o - 1} {{xleft( {x + 1} ight)} over {left( {x + 1} ight)left( {x + 2} ight)}} = mathop {lim }limits_{x o - 1} {x over {x + 2}} = - 1)
Chọn C
Câu 70 trang 182 SGK Đại số và Giải tích 11 Nâng cao
a. Trong bốn giới hạn sau đây, giới hạn nào là -1 ?
A. (mathop {lim }limits_{x o + infty } {{2{x^2} + x - 1} over {3x + {x^2}}})
B. (mathop {lim }limits_{x o - infty } {{2x + 3} over {{x^2} - 5x}})
C. (mathop {lim }limits_{x o + infty } {{{x^3} - {x^2} + 3} over {5{x^2} - {x^3}}})
D. (mathop {lim }limits_{x o - infty } {{{x^2} - 1} over {x + 1}})
b. Trong bốn giới hạn sau đây, giới hạn nào là 0 ?
A. (mathop {lim }limits_{x o 1} {{x - 1} over {{x^3} - 1}})
B. (mathop {lim }limits_{x o - 2} {{2x + 5} over {x + 10}})
C. (mathop {lim }limits_{x o 1} {{{x^2} - 1} over {{x^2} - 3x + 2}})
D. (mathop {lim }limits_{x o + infty } left( {sqrt {{x^2} + 1} - x} ight))
c. Trong bốn giới hạn sau đây, giới hạn nào không tồn tại ?
A. (mathop {lim }limits_{x o - infty } {{2x + 1} over {{x^2} + 1}})
B. (mathop {lim }limits_{x o + infty } cos x)
C. (mathop {lim }limits_{x o 0} {x over {sqrt {x + 1} }})
D. (mathop {lim }limits_{x o - 1} {x over {{{left( {x + 1} ight)}^2}}})
Giải
a.
(eqalign{
& mathop {lim }limits_{x o + infty } {{2{x^2} + x - 1} over {3x + {x^2}}} = mathop {lim }limits_{x o + infty } {{2 + {1 over x} - {1 over {{x^2}}}} over {{3 over x} + 1}} = 2 cr
& mathop {lim }limits_{x o - infty } {{2x + 3} over {{x^2} - 5x}} = mathop {lim }limits_{x o - infty } {{{2 over x} + {3 over {{x^2}}}} over {1 - {5 over x}}} = 0 cr
& mathop {lim }limits_{x o + infty } {{{x^3} - {x^2} + 3} over {5{x^2} - {x^3}}} = mathop {lim }limits_{x o + infty } {{1 - {1 over x} + {3 over {{x^3}}}} over {{5 over x} - 1}} = - 1 cr
& mathop {lim }limits_{x o - infty } {{{x^2} - 1} over {x + 1}} = mathop {lim }limits_{x o - infty } left( {x - 1}
ight) = - infty cr} )
Chọn C
b.
(eqalign{
& mathop {lim }limits_{x o 1} {{x - 1} over {{x^3} - 1}} = mathop {lim }limits_{x o 1} {1 over {{x^2} + x + 1}} = {1 over 3} cr
& mathop {lim }limits_{x o - 2} {{2x + 5} over {x + 10}} = {1 over 8} cr
& mathop {lim }limits_{x o 1} {{{x^2} - 1} over {{x^2} - 3x + 2}} = mathop {lim }limits_{x o 1} {{x + 1} over {x - 2}} = - 2 cr
& mathop {lim }limits_{x o + infty } left( {sqrt {{x^2} + 1} - x}
ight) = mathop {lim }limits_{x o + infty } {1 over {sqrt {{x^2} + 1} + x}} = 0 cr} )
Chọn D
c.
(eqalign{
& mathop {lim }limits_{x o - infty } {{2x + 1} over {{x^2} + 1}} = 0 cr
& mathop {lim }limits_{x o 0} {x over {sqrt {x + 1} }} = 0 cr
& mathop {lim }limits_{x o - 1} {x over {{{left( {x + 1}
ight)}^2}}} = - infty cr} )
Không tồn tại (mathop {lim }limits_{x o + infty } cos x) (chọn 2 dãy ({x_n} = 2npi ) và (x{'_n} = {pi over 2} + 2npi );(;mathop {lim }limitscos x{'_n} = 0);(;mathop {lim }limitscos x{_n} = 1))
Chọn B.
Câu 71 trang 182 SGK Đại số và Giải tích 11 Nâng cao
Tìm khẳng định đúng trong các khẳng định sau :
Hàm số
(fleft( x ight) = left{ {matrix{{{{{x^2}} over x}, ext{ với },x < 1,x e 0} cr {0, ext{ với },x = 0} cr {sqrt x , ext{ với },x ge 1} cr} } ight.)
A. Liên tục tại mọi điểm trừ các điểm x thuộc đoạn [0 ; 1]
B. Liên tục tại mọi điểm thuộc (mathbb R).
C. Liên tục tại mọi điểm trừ điểm x = 0
D. Liên tục tại mọi điểm trừ điểm x = 1.
Giải
Tập xác định (D =mathbb R)
f liên tục trên (left( { - infty ;0} ight);left( {0;1} ight),va,left( {1; + infty } ight))
Tại x = 0 (mathop {lim }limits_{x o 0} fleft( x ight) = mathop {lim }limits_{x o 0} {{{x^2}} over x} = mathop {lim }limits_{x o 0} x = 0 = fleft( 0 ight))
Suy ra f liên tục tại x = 0
Tại x = 1 (mathop {lim }limits_{x o {1^ - }} = mathop {lim }limits_{x o {1^ - }} {{{x^2}} over x} = 1)
(mathop {lim }limits_{x o {1^ + }} fleft( x ight) = mathop {lim }limits_{x o {1^ + }} sqrt x = 1 = fleft( 1 ight))
Vậy f liên tục tại (x = 1) nên f liên tục tại mọi điểm thuộc (mathbb R).
Chọn B
soanbailop6.com