27/04/2018, 15:56

Câu 60 trang 166 Sách bài tập (SBT) Toán 9 Tập 1

Cho tam giác ABC, đường tròn (K) bằng tiếp góc trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng: ...

Cho tam giác ABC, đường tròn (K) bằng tiếp góc trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng:

Cho tam giác ABC, đường tròn (K) bằng tiếp góc trong góc A tiếp xúc với các tia AB và AC theo thứ tự tại E và F. Cho BC = a, AC = b, AB = c. Chứng minh rằng:

a)      (AE  = AF = {{a + b + c} over 2})

b)      (BE  = {{a + b - c} over 2};)

c)       (CF = {{a + c - b} over 2})

Giải:

a) Gọi D là tiếp điểm của đường tròn (K) với cạnh BC.

Theo tính chất hai tiếp tuyến cắt nhau ta có:

                BE = BD; CD = CF

                AE = AB + BE

                AF = AC + CF

Suy ra:    AE + AF = AB + BE + AC + CF

                              = AB + AC + (BD + DC)

                              = AB + AC + BC = c + b + a

Mà AE = AF (tính chất hai tiếp tuyến cắt nhau)

Suy ra: ({ m{AE = AF = }}{{a + b + c} over 2})

b) Ta có: (BE = AE – AB = {{a + b + c} over 2} - c = {{a + b - c} over 2})

c) Ta có: (CF = AF – AC = {{a + b + c} over 2} - b = {{a + c - b} over 2}.)

Sachbaitap.com

0