27/04/2018, 14:46

Câu 33 trang 83 Sách bài tập (SBT) Toán 8 tập 1

Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm. ...

Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm.

Hình thang cân ABCD có đường chéo DB vuông góc với cạnh bên BC, BD là tia phân giác của góc D. Tính chu vi của hình thang, biết BC = 3cm.

Giải:

Ta có: AD = BC = 3 (cm)  (tính chất hình thang cân)

(widehat {ABD} = widehat {BDC}) (so le trong)

(eqalign{
& widehat {ADB} = widehat {BDC}(gt) cr
& Rightarrow widehat {ABD} = widehat {ADB} cr} )

⇒ ∆ ABD cân tại A

⇒ AB = AD = 3 (cm)

∆ BDC vuông tại B

( Rightarrow widehat {BDC} + widehat C = {90^0})

(widehat {ADC} = widehat C) (gt)

Mà (widehat {BDC} = {1 over 2}widehat {ADC}) nên  (widehat {BDC} = {1 over 2}widehat C)

(widehat C + {1 over 2}widehat C = {90^0} Rightarrow widehat C = {60^0})

Từ B kẻ đường thẳng song song AD cắt CD tại E.

Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE

⇒ DE = 3 (cm), BE = 3 (cm)

(widehat {BEC} = widehat {ADC})  (đồng vị )

Suy ra:  (widehat {BEC} = widehat C)

⇒ ∆ BEC cân tại B có (widehat C = {60^0})

⇒ ∆ BEC đều

⇒ EC = BC = 3 (cm)

CD = CE + ED = 3 + 3 = 6 (cm)

Chu vi hình thang ABCD bằng:

AB + BC + CD + DA = 3+3 +6 +3=15 (cm)

Sachbaitap.com

0