Bài 94 trang 151 SBT Toán 7 Tập 1
Bài 8: Các trường hợp bằng nhau của tam giác vuông Bài 94 trang 151 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng Ak là tia phân giác của góc A. Lời giải: Xét hai ...
Bài 8: Các trường hợp bằng nhau của tam giác vuông
Bài 94 trang 151 sách bài tập Toán 7 Tập 1: Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Gọi K là giao điểm của BD và CE. Chứng minh rằng Ak là tia phân giác của góc A.
Lời giải:
Xét hai tam giác vuông ADB và AEC, ta có:
∠(ADB) =∠(AEC) = 90o
AB = AC (gt)
∠(DAB) =∠(EAC)
Suy ra: ΔADB= ΔAEC(cạnh huyền, cạnh góc vuông)
⇒AD=AE (hai cạnh tương ứng)
xét hai tam giác vuông ADK và AEK. Ta có:
∠(ADK) =∠(AEK) = 90o
AD = AE (chứng minh trên)
AK cạnh chung
Suy ra: ΔADK= ΔAEK(cạnh huyền, cạnh góc vuông)
⇒∠(DAK) =∠(EAK) (hai góc tương ứng)
Vậy AK là tia phân giác của góc BAC
Các bài giải bài tập sách bài tập Toán 7 (SBT Toán 7) Bài 8 Chương 2 Hình Học