Bài 45 trang 163 SBT Toán 9 Tập 1
Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn Bài 45 trang 163 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H. Vẽ đường tròn (O) có đường kính AH. Chứng minh rằng: a. Điểm E nằm trên đường tròn (O). b. DE là tiếp tuyến của ...
Bài 5: Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 45 trang 163 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC cân tại A, các đường cao AD và BE cắt nhau tại H. Vẽ đường tròn (O) có đường kính AH. Chứng minh rằng:
a. Điểm E nằm trên đường tròn (O).
b. DE là tiếp tuyến của đường tròn (O).
Lời giải:
a. Gọi O là trung điểm của AH
Tam giác AEH vuông tại E có EO là đường trung tuyến nên :
EO = OA = OH = AH/2 (tính chất tam giác vuông)
Vậy điểm E nằm trên đường tròn (O ; AH/2 )
b. Ta có : OH = OE
Suy ra tam giác OHE cân tại O
Trong tam giác BDH ta có:
Từ (1), (2) và (3) suy ra:
Tam giác ABC cân tại A có AD ⊥ BC nên BD = CD
Tam giác BCE vuông tại E có ED là đường trung tuyến nên:
ED = DB = BC/2 (tính chất tam giác vuông)
Suy ra tam giác BDE cân tại D
Suy ra: DE ⊥ EO. Vậy DE là tiếp tuyến của đường tròn (O).
Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)