Bài 34 – 35.12* trang 85 SBT Lý 10 : Một sợi dày thép tiết diện S = 5,0 mm2 căng ngang giữa hai đỉnh...
Một sợi dày thép tiết diện S = 5,0 mm2 căng ngang giữa hai đỉnh cột A, B. Tại trung điểm H của sợi dây, người ta treo một hộp đèn chiếu sáng trọng lượng P = 50 N, làm cho sợi dây trùng xuống tới vị trí AMB hợp với phương ban đầu một góc lệch nhỏ α (Hình 34-35.1). Tính góc α, cho biết ...
Một sợi dày thép tiết diện S = 5,0 mm2 căng ngang giữa hai đỉnh cột A, B. Tại trung điểm H của sợi dây, người ta treo một hộp đèn chiếu sáng trọng lượng P = 50 N, làm cho sợi dây trùng xuống tới vị trí AMB hợp với phương ban đầu một góc lệch nhỏ α (Hình 34-35.1). Tính góc α, cho biết suất đàn hồi của thép là E = 20.1010 Pa.
Hướng dẫn trả lời:
Lực căng của sợi dây thép : (T = {P over {2sin alpha }})
Mặt khác theo định luật Húc : ($T = E{S over l}Delta l)
Vì độ biến dạng Δl của sợi dây thép bằng :
(Delta l = 2left( {AM – AH} ight) = 2left( {{1 over {2cos alpha }} – {1 over 2}} ight) = {{1.left( {1 – cos alpha } ight)} over {cos alpha }})
nên : (T = { m{ES}}{{1 – cos alpha } over {cos alpha }})
Với α nhỏ, có thể coi gần đúng :
(sin alpha approx an alpha { m{ }} approx { m{ }}alpha ;cosalpha = 1 – 2{sin ^2}left( {{alpha over 2}} ight) approx 1 – {{{alpha ^2}} over 2})
Khi đó ta tìm được :
(alpha = oot 3 of {{P over {ES}}} = oot 3 of {{{50} over {{{20.10}^{10}}{{.5.10}^{ – 6}}}}} = 2,{154.10^{ – 2}} approx 0,022left( {rad} ight))