Bài 20 trang 8 SBT Toán 9 Tập 1
Bài 2: Căn thức bậc hai và hằng đẳng thức Bài 20 trang 8 Sách bài tập Toán 9 Tập 1: So sánh(không dùng bảng số hay máy tính bỏ túi): a. 6+2√2 và 9 b. √2 + √3 và 3 c. 9 + 4√5 và 16 d. √11 - √3 và 2 Lời giải: ...
Bài 2: Căn thức bậc hai và hằng đẳng thức
Bài 20 trang 8 Sách bài tập Toán 9 Tập 1: So sánh(không dùng bảng số hay máy tính bỏ túi):
a. 6+2√2 và 9 b. √2 + √3 và 3
c. 9 + 4√5 và 16 d. √11 - √3 và 2
Lời giải:
a. 6+2√2 và 9
Ta có: 9 = 6 + 3
So sánh: 2√2 và 3 vì 2√2 > 0 và 3 > 0
Ta có: (2√2 )2=22.(√2)2=4.2=8
32= 9
Vì 8 < 9 nên : (2√2 )2 < 32
Vậy 6+2√2 < 9.
b. √2 + √3 và 3
Ta có: ( √2 + √3)2= (√2)2.(√3)2=2.3=6
22=4
Vì 6 > 4 nên (√2.√3)2 > 22
Suy ra: √2.√3 > 2 ⇒ 2. √2.√3 > 2.2 ⇒ 5 + 2. √2.√3 > 4 + 5
⇒ 5 + 2. √2.√3 > 9 ⇒ ( √2 + √3)2 > 9 ⇒ ( √2 + √3)2 > 32
Vậy √2 + √3 > 3
c. 9 + 4√5 và 16
So sánh 4√5 và 5
Ta có: 16 > 5 ⇒ √16 > √5 ⇒ 4 > √5
Vì √5 > 0 nên 4. √5 > √5.√5 ⇒ 4√5 > 5 ⇒ 9 + 4√5 > 5 + 9
Vậy 9 + 4√5 > 16
d. √11 - √3 và 2
Vì √11 > √3 nên √11 - √3 > 0
Ta có: (√11 - √3)2 = 11 - 2√11.√3 + 3 = 14 - 2√11.√3
22 = 4 = 14 – 10
So sánh 10 và 2√11.√3 hay so sánh giữa 5 và √11.√3
Ta có: 52 = 25
(√11.√3 )2 = (√11)2.(√3)2 = 11.3 = 33
Vì 25 < 33 nên 52 < (√11.√3 )2
Suy ra: 5 < (√11.√3 )2
Suy ra: 14 – 10 > 14 - 2√11.√3 ⇒ (√11 - √3)2 < 22
Vậy √11 - √3 < 2
Các bài giải bài tập sách bài tập Toán 9 (SBT Toán 9)