27/04/2018, 10:26

Bài 2.11 trang 165 Sách bài tập (SBT) Đại số và giải tích 11

Cho hàm số y = f(x) xác định trên khoảng: ...

Cho hàm số y = f(x) xác định trên khoảng:

Cho hàm số $y = fleft( x ight)$ xácđịnh trên khoảng (left( {a; + infty } ight))

Chứng minh rằng nếu (mathop {lim }limits_{x o  + infty } fleft( x ight) =  - infty ) thì luôn tồn tại ít nhất một sốc thuộc (left( {a; + infty } ight)) sao cho (fleft( c ight) < 0)

Giải: 

Vì (mathop {lim }limits_{x o  + infty } fleft( x ight) =  - infty ) nên với dãy số (left( {{x_n}} ight)) bất kì, ({x_n} > a) và ({x_n} o  + infty ) ta luôn có (mathop {lim }limits_{n o  + infty } fleft( x ight) =  - infty )

Do đó (mathop {lim }limits_{n o  + infty } left[ { - fleft( {{x_n}} ight)} ight] =  + infty )

Theo định nghĩa suy ra ( - fleft( {{x_n}} ight)) có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi.

Nếu số dương này là 2 thì ( - fleft( {{x_n}} ight) > 2) kể từ một số hạng nàođó trởđi.

Nói cách khác, luôn tồn tại ít nhất một số ({x_k} in left( {a; + infty } ight)) sao cho ( - fleft( {{x_k}} ight) > 2) hay (fleft( {{x_k}} ight) <  - 2 < 0)

Đặt (c = {x_k}) ta có (fleft( c ight) < 0)

0