Bài 12.2 trang 99 SBT Toán 8 Tập 1
Bài 12: Hình vuông : Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Các tia phân giác của bốn góc vuông có đỉnh O cắt các cạnh AB, BC, CD, DA theo thứ tự ở E, F, G, H. Tứ giác EFGH là hình gì ? Lời giải: Ta có: ∠(AOB) và ∠(COD) đối đỉnh nên E, ...
Bài 12: Hình vuông
: Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Các tia phân giác của bốn góc vuông có đỉnh O cắt các cạnh AB, BC, CD, DA theo thứ tự ở E, F, G, H. Tứ giác EFGH là hình gì ?
Lời giải:
Ta có: ∠(AOB) và ∠(COD) đối đỉnh nên E, O, G thẳng hàng
∠(BOC) và ∠(AOD) đối đỉnh nên F, O, H thẳng hàng
Xét ΔBEO và ΔBFO:
∠(EBO) = ∠(FBO) (tính chất hình thoi)
OB cạnh chung
∠(EBO) = ∠(FBO) = 45o (gt)
Do đó: ΔBEO = ΔBFO (g.c.g)
⇒ OE = OF (1)
Xét ΔBEO và ΔDGO:
∠(EBO) = ∠(GDO) (so le trong)
OB = OD(tính chất hình thoi)
∠(EOB) = ∠(GOD) (đối đỉnh)
Do đó: ΔBEO = ΔDGO (g.c.g)
⇒ OE = OG (2)
Xét ΔAEO và ΔAHO:
∠(EAO) = ∠(HAO) (tính chất hình thoi)
OA cạnh chung
∠(EOA) = ∠(HOA) = 45o (gt)
Do đó: ΔAEO = ΔAHO (g.c.g)
⇒ OE = OH (3)
Từ (1), (2) và (3) suy ra: OE = OF = OG = OH hay EG = FH
nên tứ giác EFGH là hình chữ nhật (vì có hai đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)
OE ⊥ OF (tính chất hai góc kề bù)
hay EG ⊥ FH
Vậy hình chữ nhật EFGH là hình vuông.
Các bài giải bài tập sách bài tập Toán 8 (SBT Toán 8)